Alterations of neutrophil f-actin kinetics by tobacco smoke: Implications for periodontal diseases

Alterations of neutrophil f-actin kinetics by tobacco smoke: Implications for periodontal diseases

Source

Division of Periodontology, Box 0650, University of California, San Francisco, San Francisco, CA 94143, USA. [email protected]

Ryder MIWu TCKallaos SSHyun W.

Abstract

Tobacco smoking is a major risk factor in the incidence and severity of periodontal diseases. Alterations of neutrophil function by short-term high levels of smoke during the act of smoking (acute smoke exposure) as well as long-term exposure to lower levels of tobacco substances in the bloodstream (chronic smoke exposure) may play a role in the pathogenesis of periodontal diseases in smokers. The polymerization and depolymerization of f-actin in response to infectious agents or inflammatory mediators is a critical process in a variety of neutrophil functions. In this study, we examined the effects of in vitro smoke exposure on neutrophils from smokers and non-smokers (which may be comparable to in vivo acute smoke exposure) and neutrophils from smokers not exposed to further in vitro smoke (which may be comparable to chronic smoke exposure) on f-actin kinetics. Peripheral neutrophils were isolated from seven healthy smoking subjects and seven healthy age-matched non-smoking subjects and exposed to 1-5 min of acute smoke in a smoke box system or not exposed to further smoke (baseline controls). Selected aliquots of neutrophils from control and 5-min exposures of acute smoke were then stimulated with the chemotactic peptide F-met-leu-phe at 10(-7) M for an additional 30-360 s. Cells were fixed and permeabilized, stained for f-actin with NBD phallacidin, and analyzed by flow cytometry. From baseline to 5 min of in vitro smoke exposure, there was a 38% decline in f-actin stain in non-smokers and a 30% decline in f-actin stain in smokers (p > 0.05) with f-actin values slightly higher in smokers than-non-smokers (p > 0.05). With F-met-leu-phe stimulation, both smokers and-non-smokers demonstrated a characteristic rise in f-actin stain from 0 to 120 s with a subsequent decline to baseline at 360 s and no significant differences in f-actin levels at any time of stimulation between groups. After preincubation with 5 min of in vitro smoke, the magnitude of rise in f-actin was less in both smokers and non-smokers when compared to cells not incubated with 5 min of smoke (p < 0.05 at 120 s for both smokers and non-smokers). F-actin values in smokers were higher than-non-smokers from 30 to 360 s of F-met-leu-phe exposure (p > 0.05). These results demonstrate that in vitro smoke exposure may impair normal f-actin kinetics. These alterations in f-actin kinetics may in turn affect other neutrophil functions which may impact on the pathogenesis of periodontal diseases in smokers.